

LSM100A Sigfox

API Manual
Rev 1.0

SJI

JAN. 28. 2022

Contents

1. DYNAMIC VIEW .. 3

2. SIGFOX MIDDLEWARE PROGRAMMING GUIDELINES .. 5

2.1 SIGFOX CORE LIBRARY .. 5

2.2 SIGFOX ADDON RF PROTOCOL LIBRARY ... 6

3. EEPROM ... 7

3.1 EEPROM DRIVER ... 7

4. UTILITIES DESCRIPTION .. 8

4.1 SEQUENCER .. 8

4.2 TIMER SERVER .. 9

4.3 LOW-POWER FUNCTIONS... 9

4.4 SYSTEM TIME .. 10

4.5 TRACE .. 11

Copyright SJI | All Rights Reserved | www.seongji.co.kr

http://www.seongji.co.kr/

 History

Date Contents Version

2022-01-28 Create V1.0

1. Dynamic view

The message sequence chart (MSC) in the figure below depicts the dynamic calls between APIs

in Tx mode (for one transmission).

Transmission MSC

When a downlink window is requested, an Rx sequence is started after Rxdelay is elapsed

When Rxdelay is elapsed, the sequence detailed in the figure below occurs.

Reception MSC

2. Sigfox middleware programming guidelines

2.1 Sigfox Core library

Embedded applications using the Sigfox Core library call SIGFOX_APIs to manage Communication

Application level Sigfox APIs

Function Description

sfx_error_t SIGFOX_API_get_device_id

(sfx_u8 *dev_id);

Copies the ID of the device to the pointer given in

parameter. The ID is 4‑byte long and in
hexadecimal format.

sfx_error_t SIGFOX_API_get_initial_pac

(sfx_u8 *initial_pac);

Gets the value of the PAC stored in the
device. This value is used when the device is
registered for the first time on the backend.

The PAC is 8‑byte long.

sfx_error_t SIGFOX_API_open (sfx_rc_t *rc);

Initializes the library and saves the input

parameters once (cannot be changed until

SIGFOX_API_close() is called)

– rc is a pointer on the radio configuration

zone. It is mandatory to use already existing

defined RCs.

sfx_error_t SIGFOX_API_close(void); Closes the library and stops the RF.

sfx_error_t SIGFOX_API_send_frame (sfx_u8

*customer_data,

sfx_u8 customer_data_length, sfx_u8

*customer_response, sfx_u8 tx_repeat,

sfx_bool initiate_downlink_flag);

Sends a standard Sigfox frame with customer
payload.

• customer_data cannot exceed 12 bytes

• customer_data_length: length in bytes

• customer_response: received response

• tx_repeat:

– when 0, sends one Tx.

– when 1, sends three Tx.

• initiate_downlink_flag: if set, the

frame sent is followed by a receive downlink

frame and an out-of- band Tx frame (voltage,

temperature and RSSI).

sfx_error_t SIGFOX_API_send_bit (sfx_bool

bit_value,

sfx_u8 *customer_response, sfx_u8 tx_repeat,

sfx_bool initiate_downlink_flag);

Sends a standard Sigfox™ frame with null

customer payload (shortest frame that Sigfox

library can generate).

• bit_value: bit sent

• customer_response: received response

• tx_repeat:

– when 0, sends one Tx.

– when 1, sends three Tx.

• initiate_downlink_flag: if set, the

frame sent is followed by a receive downlink

frame and an out-of- band Tx frame (voltage,

temperature and RSSI).

sfx_error_t SIGFOX_API_set_std_config (sfx_u32

config_words[3],

sfx_bool timer_enable);

Configures specific variables for standard.

Parameters have different meanings whether

in FH or LBT mode.

Note: this function has no influence in DC (see

Section 11.2.21 ATS400 - Enabled channels

for FCC for details).

Secondary APIs are described in sigfox_api.h. The library can be found in the

Middlewares\Third_Party\Sigfox\SigfoxLib directory.

2.2 Sigfox Addon RF protocol library

This library is used to test the device for Sigfox Verified certification. Ultimately, this library can

be removed from the build once certified

Sigfox Addon Verified library

Function Description

sfx_error_t ADDON_SIGFOX_RF_PROTOCOL_API_test_mode

(sfx _rc_enum_t rc_enum, sfx_test_mode_t test_mode);

Executes the test modes needed for

the Sigfox Verified certification:

• rc_enum: rc at which the test mode

is run

• test_mode: test mode to run

sfx_error_t

ADDON_SIGFOX_RF_PROTOCOL_API_monarch_test_ mode

(sfx_rc_enum_t rc_enum, sfx_test_mode_t test_mode,

sfx_u8 rc_capabilities);

This function executes the Monarch

test modes needed for Sigfox RF and

protocol tests.

This library is located in Middlewares\Third_Party\Sgfx\SigfoxLibTest\.

3. EEPROM

3.1 EEPROM driver

The EEPROM interface (sgfx_eeprom_if.c) is designed above ee.c to abstract the EEPROM

driver. The EEPROM is physically placed at EE_BASE_ADRESS defined in the utilities_conf.h.

EEPROM APIs

Function Description

void E2P_Init (void); DEFAULT_FACTORY_SETTINGS is written when the EEPROM is empty.

void E2P_RestoreFs

(void);

DEFAULT_FACTORY_SETTINGS are restored .

Void E2P_Write_XXX

Writes data in the EEPROM. For example:

void E2P_Write_VerboseLevel(uint8_t verboselevel);

E2P_Read_XXX

Reads XXX from the EEPROM For example:

sfx_rc_enum_t E2P_Read_Rc(void);

4. Utilities description

Utilities are located in the \Utilities directory.

Main APIs are described below. Secondary APIs and additional information can be found on the

header files related to the drivers.

4.1 Sequencer

The sequencer provides a robust and easy framework to execute tasks in the background and

enters low-power mode when there is no more activity. The sequencer implements a

mechanism to prevent race conditions.

In addition, the sequencer provides an event feature allowing any function to wait for an event

(where particular event is set by interrupt) and MIPS and power to be easily saved in any

application that implements “run to completion” command.

The utilities_conf.h file located in the project sub-folder is used to configure the task and event

IDs. The ones already listed must not be removed.

The sequencer is not an OS. Any task is run to completion and can not switch to another task

like a RTOS would do on RTOS tick. Moreover, one single-memory stack is used. The sequencer

is an advanced ‘while loop’ centralizing task and event bitmap flags.

The sequencer provides the following features:

• Advanced and packaged while loop system

• Support up to 32 tasks and 32 events

• Task registration and execution

• Waiting event and set event

• Task priority setting

To use the sequencer, the application must perform the following:

• Set the number of maximum of supported functions, by defining a value for

UTIL_SEQ_CONF_TASK_NBR.

• Register a function to be supported by the sequencer with UTIL_SEQ_RegTask().

• Start the sequencer by calling UTIL_SEQ_Run() to run a background while loop.

• Call UTIL_SEQ_SetTask() when a function needs to be executed.

Sequencer APIs

Function Description

void UTIL_SEQ_Idle(void) Called (in critical section - PRIMASK)
when there is nothing to execute.

void UTIL_SEQ_Run(UTIL_SEQ_bm_t mask_bm) Requests the sequencer to execute

functions that are pending and

enabled in the mask mask_bm.

void UTIL_SEQ_RegTask(UTIL_SEQ_bm _t task_id_bm,

uint32_t flags, void (*task)(void))

Registers a function (task) associated

with a signal (task_id_bm) in the

sequencer. The task_id_bm must

have a single bit set.

void

UTIL_SEQ_SetTask(UTIL_SEQ_bm_t taskId_bm , uint32_t

task_Prio)

Requests the function associated with

the task_id_bm to be executed. The

task_prio is evaluated by the

sequencer only when a function has

finished.

If several functions are pending at any

one time, the one with the highest

priority (0) is executed.

4.2 Timer server

The timer server allows the user to request timed-tasks execution. As the hardware timer is

based on the RTC, the time is always counted, even in low-power modes.

The timer server provides a reliable clock for the user and the stack. The user can request as

many timers as the application requires.

The timer server is located in Utilities\timer\stm32_timer.c.

Timer server APIs

Function Description

UTIL_TIMER_Status_t UTIL_TIMER_Init(void) Initializes the timer server.

UTIL_TIMER_Status_t UTIL_TIMER_Create

(UTIL_TIMER_Object_t *TimerObject, uint32_t

PeriodValue, UTIL_TIMER_Mode_t Mode, void

(*Callback)

(void *), void *Argument)

Creates the timer object and

associates a callback function when

timer elapses.

UTIL_TIMER_Status_t

UTIL_TIMER_SetPeriod(UTIL_TIMER_Object_t

*TimerObject,

uint32_t NewPeriodValue)

Updates the period and starts the timer

with a timeout value (milliseconds).

UTIL_TIMER_Status_t UTIL_TIMER_Start

(UTIL_TIMER_Object_t *TimerObject)

Starts and adds the timer object to the

list of timer events.

UTIL_TIMER_Status_t UTIL_TIMER_Stop

(UTIL_TIMER_Object_t *TimerObject)

Stops and removes the timer object

from the list of timer events.

4.3 Low-power functions

The low-power utility centralizes the low-power requirement of separate modules implemented

by the firmware, and manages the low-power entry when the system enters idle mode. For

example, when the DMA is in use to print data to the console, the system must not enter a low-

power mode below Sleep mode because the DMA clock is switched off in Stop mode

The APIs presented in the table below are used to manage the low-power modes of the core

MCU

Low-power APIs

Function Description

void UTIL_LPM_EnterLowPower(void)
Enters the selected low-power mode.

Called by idle state of the system

void LPM_SetStopMode(LPM_Id_t id, LPM_SetMode_t mode) Sets Stop mode. id defines the process

mode requested:

LPM_Enable or LPM_Disable.(1)

void LPM_SetOffMode(LPM_Id_t id, LPM_SetMode_t mode) Sets Stop mode. id defines the process

mode requested:

LPM_Enable or LPM_Disable.

UTIL_LPM_Mode_t UTIL_LPM_GetMode(void) Returns the selected low-power mode.

LPM_Id_t are bitmaps. Their shift values are defined in utilities_def.h of project sub-folder

Low-level APIs

Function Description

void PWR_EnterSleepMode (void) API called before entering Sleep mode

void PWR_ExitSleepMode (void) API called on exiting Sleep mode

void PWR_EnterStopMode (void) API called before Stop mode

void PWR_ExitStopMode (void) API called on exiting Stop mode

void PWR_EnterOffMode (void) API called before entering Off mode

void PWR_ExitOffMode(void) API called on exiting Off mode

4.4 System time

The MCU time is referenced to the MCU reset. The system time is able to record the UNIX®

epoch time. The APIs presented in the table below are used to manage the system time of the

core MCU.

System time functions

Function Description

void SysTimeSet (SysTime_t sysTime)

Based on an input UNIX epoch in

seconds and sub- seconds, the

difference with the MCU time is

stored in the backup register (retained

even in Standby mode).(1)

SysTime_t SysTimeGet (void) Gets the current system time.(1)

uint32_t SysTimeMkTime

(const struct tm* localtime)

Converts local time into UNIX epoch
time. (2)

void SysTimeLocalTime (const uint32_t timestamp,

struct tm *localtime)

Converts UNIX epoch time into local
time.(2)

4.5 Trace

The trace module enables to print data on a COM port using DMA. The APIs presented in the

table below are used to manage the trace functions.

Trace functions

Function Description

UTIL_ADV_TRACE_Status_t UTIL_ADV_TRACE_Init(void)

TraceInit must be called at the

application initialization. Initializes the

com or vcom hardware in DMA mode

and registers the callback to be

processed at DMA transmission

completion.

UTIL_ADV_TRACE_Status_t UTIL_ADV_TRACE_FSend(uint32_t

VerboseLevel, uint32_t Region,

uint32_t TimeStampState, const char

*strFormat, ...)

Converts string format into a buffer and

posts it to the circular queue for printing.

UTIL_ADV_TRACE_Status_t

UTIL_ADV_TRACE_Send(uint8_t *pdata, uint16_t len)

Posts data of length = len and posts

it to the circular queue for printing.

UTIL_ADV_TRACE_Status_t UTIL_ADV_TRACE_ZCSend

(uint32_t VerboseLevel, uint32_t Region, uint32_t

TimeStampState, uint32_t length,

void (*usercb)(uint8_t*, uint16_t, uint16_t))

Writes user formatted data directly in

the FIFO (Z-Cpy).

The status values of the trace functions are defined in the structure

UTIL_ADV_TRACE_Status_t as follows.

